PENN STATE: Residual hydraulic fracturing water not a risk to groundwater

Source: Denver Business Journal - Frack Fluids

Source: Denver Business Journal – Gelled “frack” fluid dangles in mid-air above a cup during a test that water temperature and sand-water-chemical mixtures are correct. The test is performed before and during every hydraulic fracturing job.

By Patricia Craig – September 10, 2014

UNVERSITY PARK, Pa. — Hydraulic fracturing — fracking or hydrofracturing — raises many concerns about potential environmental impacts, especially water contamination. Currently, data show that the majority of water injected into wells stays underground, triggering fears that it might find its way into groundwater. New research by a team of scientists should help allay those fears.

In a paper published in the current issue of the Journal of Unconventional Oil and Gas Resources, Terry Engelder, professor of geosciences, Penn State; Lawrence Cathles, professor of earth and atmospheric sciences, Cornell University; and Taras Bryndzia, geologist, Shell International Exploration and Production Inc., report that injected water that remains underground is sequestered in the rock formation and therefore does not pose a serious risk to water supplies.

Hydraulic fracturing is a drilling technique commonly used to extract gas from previously inaccessible “tight” gas reserves, including gas trapped in shale formations such as the Marcellus. During this technique between 1.2 and 5 million gallons of water mixed with sand and chemical additives are injected at high pressure into each well to fracture the rock and release the gas.

Typically less than half of the injected water returns to the surface as “flowback” or, later, production brine, and in many cases recovery is less than 30 percent. In addition to the chemical additives, flowback water contains natural components of the gas shale including salt, some metals, and radionuclides and could impair water quality if released without proper treatment. While flowback water can be managed and treated at the surface, the fate of the water left in place, called residual treatment water or RTW, was previously uncertain.

Some have suggested that RTW may be able to flow upward along natural pathways, mainly fractures and faults, and contaminate overlying groundwater. Others have proposed that natural leakage of the Marcellus is occurring without human assistance through high-permeability fractures connecting the Marcellus directly to the water table and that hydraulic fracturing could worsen this situation.

The researchers report that ground water contamination is not likely because contaminant delivery rate would be too small even if leakage were possible, but more importantly, upward migration of RTW is not plausible due to capillary and osmotic forces that propel RTW into, not out of, the shale. Their study indicates that RTW will be stably retained within the shale formation due to multiphase capillary phenomena.

Continue reading story at Penn State

Share Button
Print Friendly
This entry was posted in Drilling, Environment, HydroFracking and tagged , , , , , , , , , , , , , . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*